Can a serverless Postgres database really handle the demands of a real-time application? The answer lies in pairing it with the right publish-subscribe model. In this guide, you will learn how to combine the real-time capabilities of Ably LiveSync with the structured power of Neon Postgres to build a optimistic and scalable comment system in your Next.js application.

Prerequisites

To follow this guide, you’ll need the following:

Create the Next.js application

Let’s get started by cloning the Next.js project with the following command:

git clone https://github.com/neondatabase-labs/ably-livesync-neon

Once that is done, move into the project directory and install the necessary dependencies with the following command:

cd ably-livesync-neon
npm install

The libraries installed include:

  • @ably-labs/models: A library for working with data models and real-time updates in Ably.
  • @neondatabase/serverless: A serverless Postgres client designed for Neon.
  • @prisma/adapter-neon: A Prisma adapter for connecting with Neon serverless Postgres.
  • @prisma/client: Prisma’s auto-generated client for interacting with your database.
  • ably: A real-time messaging and data synchronization library.
  • ws: A WebSocket library for Node.js.

The development-specific libraries include:

  • prisma: A toolkit for Prisma schema management, migrations, and generating clients.
  • tsx: A fast TypeScript runtime for development and rebuilding.

Once that's done, copy the .env.example to .env via the following command:

cp .env.example .env

Provision a Serverless Postgres

To set up a serverless Postgres, go to the Neon console and create a new project. Once your project is created, you will receive a connection string that you can use to connect to your Neon database. The connection string will look like this:

postgresql://<user>:<password>@<endpoint_hostname>.neon.tech:<port>/<dbname>?sslmode=require

Replace <user>, <password>, <endpoint_hostname>, <port>, and <dbname> with your specific details.

Use this connection string as an environment variable designated as DATABASE_URL in the .env file.

Set up Database Schema

In the file named schema.tsx, you would see the following code:

// File: schema.tsx

import 'dotenv/config';
import { WebSocket } from 'ws';
import { neon, neonConfig } from '@neondatabase/serverless';

neonConfig.webSocketConstructor = WebSocket;
neonConfig.poolQueryViaFetch = true;

async function prepare() {
  if (!process.env.DATABASE_URL) throw new Error('DATABASE_URL environment variable not found.');
  const sql = neon(process.env.DATABASE_URL);
  await Promise.all([
    sql`CREATE TABLE IF NOT EXISTS nodes (id TEXT PRIMARY KEY, expiry TIMESTAMP WITHOUT TIME ZONE NOT NULL);`,
    sql`CREATE TABLE IF NOT EXISTS outbox (sequence_id  serial PRIMARY KEY, mutation_id  TEXT NOT NULL, channel TEXT NOT NULL, name TEXT NOT NULL, rejected boolean NOT NULL DEFAULT false, data JSONB, headers JSONB, locked_by TEXT, lock_expiry TIMESTAMP WITHOUT TIME ZONE, processed BOOLEAN NOT NULL DEFAULT false);`,
  ]);
  await sql`CREATE OR REPLACE FUNCTION public.outbox_notify() RETURNS trigger AS $$ BEGIN PERFORM pg_notify('ably_adbc'::text, ''::text); RETURN NULL; EXCEPTION WHEN others THEN RAISE WARNING 'unexpected error in %s: %%', SQLERRM; RETURN NULL; END; $$ LANGUAGE plpgsql;`;
  await sql`CREATE OR REPLACE TRIGGER public_outbox_trigger AFTER INSERT ON public.outbox FOR EACH STATEMENT EXECUTE PROCEDURE public.outbox_notify();`;
  console.log('Database schema set up succesfully.');
}

prepare();

The code above defines a function that connects to a Neon serverless Postgres database using a DATABASE_URL environment variable and sets up the necessary schema for the real-time application. It creates two tables, nodes and outbox, to store data and manage message processing, respectively. A trigger function, outbox_notify, is implemented to send notifications using pg_notify whenever new rows are inserted into the outbox table. This ensures the database is ready for real-time updates and WebSocket-based communication.

To run the schema against your Neon Postgres, execute the following command:

npm run db

If it runs succesfully, you should see Database schema set up succesfully. in the terminal.

TODO

TODO

// File: lib/prisma/index.ts

import { neonConfig, Pool } from '@neondatabase/serverless';
import { PrismaNeon } from '@prisma/adapter-neon';
import { PrismaClient } from '@prisma/client';
import { WebSocket } from 'ws';

declare global {
  var prisma: PrismaClient | undefined;
}

const connectionString = `${process.env.DATABASE_URL}`;

neonConfig.webSocketConstructor = WebSocket;
neonConfig.poolQueryViaFetch = true;

const pool = new Pool({ connectionString });
const adapter = new PrismaNeon(pool);
const prisma = global.prisma || new PrismaClient({ adapter });

if (process.env.NODE_ENV === 'development') global.prisma = prisma;

export default prisma;

TODO

// File: lib/prisma/api.ts

import prisma from '@/lib/prisma';
import { Prisma, PrismaClient } from '@prisma/client';
import * as runtime from '@prisma/client/runtime/library';

export type Author = {
  id: number;
  image: string;
  username: string;
};

export type Comment = {
  id: number;
  postId: number;
  author: Author;
  content: string;
  createdAt: Date;
  optimistic?: boolean;
};

export type Post = {
  id: number;
  title: string;
  content: string;
  comments: Comment[];
};

export async function getPosts(): Promise<Post[]> {
  return await prisma.post.findMany({
    include: {
      comments: {
        include: {
          author: true,
        },
      },
    },
  });
}

export async function getPost(id: number): Promise<[Post, number]> {
  return await prisma.$transaction(async (tx) => {
    const post = await getPostTx(tx, id);
    type r = { nextval: number };
    const [{ nextval }] = await tx.$queryRaw<
      r[]
    >`SELECT nextval('outbox_sequence_id_seq')::integer`;
    return [post, nextval];
  });
}

async function getPostTx(tx: TxClient, id: number) {
  return await tx.post.findUniqueOrThrow({
    where: { id },
    include: {
      comments: {
        include: {
          author: true,
        },
        orderBy: {
          createdAt: 'asc',
        },
      },
    },
  });
}

export async function getRandomUser() {
  const count = await prisma.user.count();
  return await prisma.user.findFirstOrThrow({
    skip: Math.floor(Math.random() * count),
  });
}

export type TxClient = Omit<PrismaClient, runtime.ITXClientDenyList>;

export async function addComment(
  tx: TxClient,
  mutationId: string,
  postId: number,
  authorId: number,
  content: string
): Promise<Prisma.outboxCreateInput> {
  const comment = await tx.comment.create({
    data: { postId, authorId, content },
    include: { author: true },
  });
  return {
    mutation_id: mutationId,
    channel: `post:${comment.postId}`,
    name: 'addComment',
    data: comment,
    headers: {},
  };
}

export async function editComment(
  tx: TxClient,
  mutationId: string,
  id: number,
  content: string
): Promise<Prisma.outboxCreateInput> {
  await tx.comment.findUniqueOrThrow({ where: { id } });
  const comment = await tx.comment.update({
    where: { id },
    data: { content },
    include: { author: true },
  });
  return {
    mutation_id: mutationId,
    channel: `post:${comment.postId}`,
    name: 'editComment',
    data: comment,
    headers: {},
  };
}

export async function deleteComment(
  tx: TxClient,
  mutationId: string,
  id: number
): Promise<Prisma.outboxCreateInput> {
  const comment = await tx.comment.delete({
    where: { id },
  });
  return {
    mutation_id: mutationId,
    channel: `post:${comment.postId}`,
    name: 'deleteComment',
    data: comment,
    headers: {},
  };
}

export async function withOutboxWrite(
  op: (tx: TxClient, ...args: any[]) => Promise<Prisma.outboxCreateInput>,
  ...args: any[]
) {
  return await prisma.$transaction(async (tx) => {
    const { mutation_id, channel, name, data, headers } = await op(tx, ...args);
    await tx.outbox.create({
      data: { mutation_id, channel, name, data, headers },
    });
  });
}

The code above interacts with the Postgres database using Prisma to manage comments. It implements operations like fetching, adding, editing, and deleting comments, with an emphasis on ensuring these operations are recorded in the outbox table for the event-driven system to capturing changes and reflect them in rest of the web clients. Let's understand each function in the code above:

  • withOutboxWrite(): This higher-order function wraps any operation that modifies the database (such as adding, editing, or deleting a comment) and ensures that the change is also written to the outbox table. It first performs the operation, retrieves the necessary outbox details, and then writes the entry to the outbox table within the same transaction.

  • getPosts(): Fetches all posts from the database, along with their associated comments and the authors of those comments. The function returns a list of posts, each containing its comments and authors.

  • getPost(id: number): Promise<[Post, number]>: Fetches a single post by its ID, along with the associated comments and authors. Additionally, it executes a raw SQL query within a transaction to get the next value from a PostgreSQL sequence (outbox_sequence_id_seq), returning this value alongside the post. This ensures that the operation has both the requested post and sequence number, which may be used in event-driven systems for ordering.

  • getPostTx(tx: TxClient, id: number): A helper function used by getPost() to retrieve a post within a transaction (tx). It ensures the post's comments are fetched in ascending order of their creation timestamp.

  • getRandomUser(): Retrieves a random user from the database. The function first counts the total number of users and then selects one randomly based on the count.

  • TxClient: This type represents a transaction client, which is essentially a modified version of the PrismaClient excluding certain methods that are restricted during transactions (ITXClientDenyList).

  • addComment(): Adds a new comment to a post within a transaction. The function takes in several parameters, such as the transaction client (tx), mutation ID, post ID, author ID, and comment content. It returns an outbox entry that can be used in an event-driven system for tracking the mutation. The outbox entry includes details like the mutation ID, channel (based on the post), event name (addComment), and the newly created comment.

  • editComment(): Edits an existing comment. It accepts the transaction client (tx), mutation ID, comment ID, and new content. After updating the comment, it returns an outbox entry similar to addComment(), but with the event name editComment.

  • deleteComment(): Deletes a comment. It takes in the transaction client (tx), mutation ID, and the comment ID to be deleted. Like the other mutation functions, it returns an outbox entry, but with the event name deleteComment.

TODO

TODO

// File: app/api/comments/[id]/route.ts

export const dynamic = 'force-dynamic';

export const fetchCache = 'force-no-store';

import { NextRequest, NextResponse } from 'next/server';
import { withOutboxWrite, editComment, deleteComment } from '@/lib/prisma/api';

export async function PUT(request: NextRequest, { params }: { params: Promise<{ id: string }> }) {
  try {
    const id = Number((await params).id);
    const comment: { mutationId: string; content: string } = await request.json();
    const data = await withOutboxWrite(editComment, comment.mutationId, id, comment.content);
    return NextResponse.json({ data });
  } catch (error) {
    console.error('failed to update comment', error);
    return NextResponse.json({ message: 'failed to update comment', error }, { status: 500 });
  }
}

export async function DELETE(
  request: NextRequest,
  { params }: { params: Promise<{ id: string }> }
) {
  try {
    const id = Number((await params).id);
    const mutationId = request.headers.get('x-mutation-id') || 'missing';
    const data = await withOutboxWrite(deleteComment, mutationId, id);
    return NextResponse.json({ data });
  } catch (error) {
    console.error('failed to delete comment', error);
    return NextResponse.json({ message: 'failed to delete comment', error }, { status: 500 });
  }
}

In the code above, there are two endpoints, PUT and DELETE, both of which parse the id param in the request. The PUT endpoint extracts the comment properties (mutationId, content) to edit the comment in Postgres and sync the changes to the rest of the web clients that are actively looking to stream comment changes in real-time.

// File: app/api/comments/route.ts

export const dynamic = 'force-dynamic';

export const fetchCache = 'force-no-store';

import { NextRequest, NextResponse } from 'next/server';
import { withOutboxWrite, addComment } from '@/lib/prisma/api';

export async function POST(request: NextRequest) {
  try {
    const comment: {
      mutationId: string;
      postId: number;
      authorId: number;
      content: string;
    } = await request.json();
    const data = await withOutboxWrite(
      addComment,
      comment.mutationId,
      comment.postId,
      comment.authorId,
      comment.content
    );
    return NextResponse.json({ data });
  } catch (error) {
    console.error('failed to add comment', error);
    return NextResponse.json({ message: 'failed to add comment', error }, { status: 500 });
  }
}

In the code above, the endpoint parses the request's body to extract the comment properties (mutationID, postId, authorId, content). Further, it inserts into Postgres using the withOutboxWrite helper function which makes sure to sync it in Postgres and rest of the web clients that are actively looking to stream comments in real-time.

// File: app/api/posts/[id]/route.ts

export const dynamic = 'force-dynamic';

export const fetchCache = 'force-no-store';

import { NextRequest, NextResponse } from 'next/server';
import { getPost } from '@/lib/prisma/api';

export async function GET(_: NextRequest, { params }: { params: Promise<{ id: string }> }) {
  try {
    const id = Number((await params).id);
    const [data, sequenceId] = await getPost(id);
    return NextResponse.json({ sequenceId, data });
  } catch (error) {
    return NextResponse.json({ message: 'failed to get post', error }, { status: 500 });
  }
}

In the code above, the endpoint parses the id param in the request and returns the sequenceId and the comment details associated with that ID in Postgres.

Create the UI for Starting Conversations and Synchronizing Chat History

Create a file named page.tsx in the app/c/[slug] directory with the following code:

// File: app/c/[slug]/page.tsx

'use client';

import { toast } from 'sonner';
import { useParams } from 'next/navigation';
import { useCallback, useEffect, useState } from 'react';
import { type Role, useConversation } from '@11labs/react';

export default function () {
  const { slug } = useParams();
  const [currentText, setCurrentText] = useState('');
  const [messages, setMessages] = useState<any[]>([]);
  const loadConversation = () => {
    fetch(`/api/c?id=${slug}`)
      .then((res) => res.json())
      .then((res) => {
        if (res.length > 0) {
          setMessages(
            res.map((i: any) => ({
              ...i,
              formatted: {
                text: i.content_transcript,
                transcript: i.content_transcript,
              },
            }))
          );
        }
      });
  };
  const conversation = useConversation({
    onError: (error: string) => {
      toast(error);
    },
    onConnect: () => {
      toast('Connected to ElevenLabs.');
    },
    onMessage: (props: { message: string; source: Role }) => {
      const { message, source } = props;
      if (source === 'ai') setCurrentText(message);
      fetch('/api/c', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({
          id: slug,
          item: {
            type: 'message',
            status: 'completed',
            object: 'realtime.item',
            id: 'item_' + Math.random(),
            role: source === 'ai' ? 'assistant' : 'user',
            content: [{ type: 'text', transcript: message }],
          },
        }),
      }).then(loadConversation);
    },
  });
  const connectConversation = useCallback(async () => {
    toast('Setting up ElevenLabs...');
    try {
      await navigator.mediaDevices.getUserMedia({ audio: true });
      const response = await fetch('/api/i', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
      });
      const data = await response.json();
      if (data.error) return toast(data.error);
      await conversation.startSession({ signedUrl: data.apiKey });
    } catch (error) {
      toast('Failed to set up ElevenLabs client :/');
    }
  }, [conversation]);
  const disconnectConversation = useCallback(async () => {
    await conversation.endSession();
  }, [conversation]);
  const handleStartListening = () => {
    if (conversation.status !== 'connected') connectConversation();
  };
  const handleStopListening = () => {
    if (conversation.status === 'connected') disconnectConversation();
  };
  useEffect(() => {
    return () => {
      disconnectConversation();
    };
  }, [slug]);
  return <></>;
}

The code above does the following:

  • Defines a loadConversation function which calls the /api/c route to fetch the conversation history based on the particular slug (i.e. the conversation ID).
  • Uses the useConversation hook by ElevenLabs to display the toast when the instance is connected, and to sync the real-time message to Postgres using the onMessage callback.
  • Defines a connectConversation function that instantiates a private conversation with the agent after obtaining a signed URL using the /api/i route.
  • Defines a disconnectConversation function that disconnects the ongoing conversation with the agent.
  • Creates a useEffect handler which on unmount, ends the ongoing conversation with the agent.

Next, import the TextAnimation component which displays different state of the conversation, whether AI is listening or speaking (and what if so).

'use client';

// ... Existing imports ...
import TextAnimation from '@/components/TextAnimation';

export default function () {
  // ... Existing code ...
  return (
    <>
      <TextAnimation
        currentText={currentText}
        onStopListening={handleStopListening}
        onStartListening={handleStartListening}
        isAudioPlaying={conversation.isSpeaking}
      />
    </>
  );
}

Finally, add a Show Transcript button that displays the conversation history stored in Neon to the user.

'use client';

// ... Existing imports ...
import { X } from 'react-feather';
import Message from '@/components/Message';

export default function () {
  // ... Existing code ...
  const [isTranscriptOpen, setIsTranscriptOpen] = useState(false);
  return (
    <>
      {/* Existing code */}
      {messages.length > 0 && (
        <button
          className="fixed right-4 top-2 text-sm underline"
          onClick={() => setIsTranscriptOpen(!isTranscriptOpen)}
        >
          Show Transcript
        </button>
      )}
      {isTranscriptOpen && (
        <div className="fixed inset-0 z-50 flex items-center justify-center bg-black bg-opacity-50">
          <div className="max-h-[90%] max-w-[90%] overflow-y-scroll rounded bg-white p-4 text-black shadow-lg">
            <div className="flex flex-row items-center justify-between">
              <span>Transcript</span>
              <button onClick={() => setIsTranscriptOpen(false)}>
                <X />
              </button>
            </div>
            <div className="mt-4 flex flex-col gap-y-4 border-t py-4">
              {messages.map((conversationItem) => (
                <Message key={conversationItem.id} conversationItem={conversationItem} />
              ))}
            </div>
          </div>
        </div>
      )}
    </>
  );
}

Now, let's move on to deploying the application to Vercel.

Deploy to Vercel

The repository is now ready to deploy to Vercel. Use the following steps to deploy:

  • Start by creating a GitHub repository containing your app's code.
  • Then, navigate to the Vercel Dashboard and create a New Project.
  • Link the new project to the GitHub repository you've just created.
  • In Settings, update the Environment Variables to match those in your local .env file.
  • Deploy.

Summary

TODO - In this guide, you learned how to build a real-time AI voice assistant using ElevenLabs and Next.js, integrating it with a Postgres database to store and retrieve conversation histories. You explored the process of setting up a serverless database, creating a customizable AI agent, and implementing a user-friendly interface with animations and message handling. By the end, you gained hands-on experience connecting various technologies to create a fully functional AI voice assistant application.

Need help?

Join our Discord Server to ask questions or see what others are doing with Neon. Users on paid plans can open a support ticket from the console. For more details, see Getting Support.